Long-range Carbon–Fluorine Scalar Coupling in some Fluorinated Aromatic Compounds

By DAVID DODDRELL,* DAVID JORDAN, and N. V. RIGGS

(Department of Organic Chemistry, University of New England, Armidale, N.S.W. 2351, Australia)

and P. R. WELLS

(Department of Chemistry, University of Queensland, St. Lucia, Brisbane, Queensland 4067, Australia)

Summary The proton-decoupled ¹³C spectrum of 2fluoronaphthalene has been reassigned and reveals a sixbond coupling of 2.8 Hz between the fluorine and C-6; a similar coupling is observed in 4-fluorostyrene; longrange ¹³C-¹⁹F coupling constants in other fluorinated aromatics appear to be related to variations in the π -bond orders in the bonds between the interacting spins.

IN a recent paper Weigert and Roberts¹ implied that longrange ¹³C-¹⁹F scalar coupling in fluorinated aromatics attenuates with an increase in the distance between the two nuclei involved. Partly on this basis they assigned the ¹³C spectrum of 2-fluoronaphthalene stated to consist of six doublets and four singlets; in particular, the four singlets were assigned to carbons in the ring farther removed from the fluorine atom. A doublet, J_{CF} 2.5 Hz, at 2.1 p.p.m. upfield from benzene was stated to be insensitive to the proton-decoupler frequency and assigned to C-10.

fluorine as does C-6 in the 2-fluoronaphthalenes and C-8 in 4-fluorostyrene. In 5-fluoroquinoline, the ¹³C-¹⁹F coupling constants to C-3 and C-4 (J_{CF} 3.5 and 4.7 Hz, respectively) are similar in magnitude to those to the corresponding coupling constants in 1-fluoronaphthalene¹ ($J_{C-7,F}$ 3.3; $J_{C-8,F}$ 5.6 Hz) and 2-fluorostyrene ($J_{C\omega,F}$ 4.7, $J_{C\alpha,F}$ 5.3 Hz). In 8-fluoroquinoline, however, no coupling is observed to C-2.

In recent publications Barfield and Karplus⁴ have expressed long-range proton-proton scalar coupling in terms of the total Penney-Dirac bond order between the two centres involved. In the cases discussed above, it is probable that long-range coupling is transmitted via the π -framework and that reduction in π -bond orders results in reduction in the coupling constant. For instance, the lack of observable coupling to C-2 in 8-fluoroquinoline may be the result of a reduction in the π -bond orders of the CN bonds relative to those for the corresponding C-C bonds in

13C Chemical shifts^a (o) and 13C-19F coupling constants^b (JCF) for 2-fluoro- (I) and 2-fluoro-6-methylnaphthalene (II)

Compound		C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10
(I)	σ Icf	$76.9 \\ 25.9$	$32 \cdot 2 \\ 248 \cdot 8$	$83.6 \\ 21.0$	$62.5 \\ 10.1$	$62 \cdot 2$ c	$66.5 \\ 2.8$	$65.0 \\ 1.2$	66·1 c	58·3 9·9	$65 \cdot 6 \\ 5 \cdot 1$
(II)	б Јсғ	$76 \cdot 3 \\ 24 \cdot 9$	d d	81∙8 19∙1	63·0 9·1	63·3 с	$57.8 \\ 2.9$	${61 \cdot 6} \\ {1 \cdot 2}$	65·6 c	60·0 8·9	$65 \cdot 4 \\ 5 \cdot 5$

^a In p.p.m. upfield from CS₂. Note, the data in ref. 1 can be converted from the benzene scale to the CS₂ scale by adding $64 \cdot 4$ ^b In Hz. ^c No resolvable ¹³C-¹⁹F coupling. ^d Instrumental sensitivity precluded precise determination.

We have re-examined the proton-decoupled ¹³C spectrum of 2-fluoronaphthalene at 14.1 and 23.5 kG and find that, within the resolution of our instruments, the spectrum consists of eight doublets and two singlets. Off-resonance noise-decoupling experiments² show that the doublet assigned by Weigert and Roberts¹ to C-10 results from a protonated carbon, and comparison of the spectra of 2fluoronaphthlene and 2-fluoro-6-methylnaphthalene (see Table) reveals that this doublet arises from C-6. The resulting chemical-shift parameters compare closely with those for 2-methyl substitution in naphthalene³ and allow complete assignment of the spectrum of 2-fluoronaphthalene. It is now clear also that C-7 is coupled to the fluorine $(J_{CF} 1.2 \text{ Hz})$, whereas C-5 and C-8 are not; *i.e.* long-range ¹³C-¹⁹F coupling does not necessarily decrease as the distance between the interacting spins increases.

Such couplings have also been recorded in other fluorinated aromatic compounds. In 4-fluorostyrene, the fluorine is coupled to C-8 (J_{CF} 1.9 Hz) but not to C-7. In 6-fluoroquinoline, however, no coupling is observed to C-2 although it stands in the same geometric arrangement relative to the naphthalene.⁵ Further evidence is available from a comparison of the ¹³C spectra of 4-fluorostyrene with those of 4-fluorobiphenyls⁶ and 4-fluorostilbenes.⁶ Although in 4-fluorostyrene a coupling of 1.9 Hz is observed over the six bonds from the fluorine to C-8, ¹³C-¹⁹F coupling in the biphenyls or stilbenes is confined to the fluorinated ring. In these cases there are substantial reductions in the π -bond orders between the centres of interest as compared with those in styrene.⁵

Although broad correlations can be made between ¹³C-¹⁹F long-range coupling constants and individual π -bond orders between the interacting centres, quantitative correlations probably involve total Penny-Dirac bond orders.

We thank Dr. W. Adcock, Flinders University, for the sample of 2-fluoro-6-methylnaphthalene, Professor J. Grutzner, Purdue University, for the ¹³C spectrum of 2fluoronaphthalene at 23.5 kG, and the Australian Research Grants Committee for financial support.

(Received, 7th August 1972, Com. 1383.)

- ¹ F. J. Weigert and J. D. Roberts, J. Amer. Chem. Soc., 1971, 93, 2361.
 ² E. Wenkert, A. O. Clouse, D. W. Cochran, and D. Doddrell, J. Amer. Chem. Soc., 1969, 91, 6879.
 ³ D. Doddrell and P. R. Wells, unpublished results.
- ⁴ M. Barfield and M. Karplus, J. Amer. Chem. Soc., 1969, 91, 1 and references therein.
- ⁵ C. A. Coulson and A. Streitwieser, jun., 'Dictionary of π-Electron Calculations,' Pergamon Press, Oxford, 1965.
 ⁶ D. Doddrell, D. Jordan, and N. V. Riggs, unpublished results.